FIR Language Reference¶
This page contains an overview of the Fortran IR operations, their syntax, and example usages.
FIR Operations¶
fir.absent
(::fir::AbsentOp)¶
Create value to be passed for absent optional function argument
Syntax:
operation ::= `fir.absent` type($intype) attr-dict
Given the type of a function argument, create a value that will signal that an optional argument is absent in the call. On the caller side, fir.is_present can be used to query if the value of an optional argument was created with a fir.absent operation. It is undefined to use a value that was created by a fir.absent op in any other operation than fir.call and fir.is_present.
%1 = fir.absent fir.box<fir.array<?xf32>>
fir.call @_QPfoo(%1) : (fir.box<fir.array<?xf32>>) -> ()
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Results:¶
Result |
Description |
---|---|
|
any reference or box like |
fir.addc
(::fir::AddcOp)¶
Syntax:
operation ::= `fir.addc` operands attr-dict `:` type($result)
Traits: Commutative
, SameOperandsAndResultType
Interfaces: ArithFastMathInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
fastmath | ::mlir::arith::FastMathFlagsAttr | Floating point fast math flags |
Operands:¶
Operand |
Description |
---|---|
|
any floating point complex type |
|
any floating point complex type |
Results:¶
Result |
Description |
---|---|
|
any type |
fir.address_of
(::fir::AddrOfOp)¶
Convert a symbol to an SSA value
Syntax:
operation ::= `fir.address_of` `(` $symbol `)` attr-dict `:` type($resTy)
Convert a symbol (a function or global reference) to an SSA-value to be used in other operations. References to Fortran symbols are distinguished via this operation from other arbitrary constant values.
%p = fir.address_of(@symbol) : !fir.ref<f64>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
symbol | ::mlir::SymbolRefAttr | symbol reference attribute |
Results:¶
Result |
Description |
---|---|
|
any addressable |
fir.allocmem
(::fir::AllocMemOp)¶
Allocate storage on the heap for an object of a given type
Creates a heap memory reference suitable for storing a value of the
given type, T. The heap refernce returned has type !fir.heap<T>
.
The memory object is in an undefined state. allocmem
operations must
be paired with freemem
operations to avoid memory leaks.
%0 = fir.allocmem !fir.array<10 x f32>
fir.freemem %0 : !fir.heap<!fir.array<10 x f32>>
Traits: AttrSizedOperandSegments
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Allocate on ::mlir::SideEffects::DefaultResource}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
in_type | ::mlir::TypeAttr | any type attribute |
uniq_name | ::mlir::StringAttr | string attribute |
bindc_name | ::mlir::StringAttr | string attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of any integer |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
Reference to an ALLOCATABLE attribute type |
fir.alloca
(::fir::AllocaOp)¶
Allocate storage for a temporary on the stack given a type
This primitive operation is used to allocate an object on the stack. A
reference to the object of type !fir.ref<T>
is returned. The returned
object has an undefined/uninitialized state. The allocation can be given
an optional name. The allocation may have a dynamic repetition count
for allocating a sequence of locations for the specified type.
%c = ... : i64
%x = fir.alloca i32
%y = fir.alloca !fir.array<8 x i64>
%z = fir.alloca f32, %c
%i = ... : i16
%j = ... : i32
%w = fir.alloca !fir.type<PT(len1:i16, len2:i32)> (%i, %j : i16, i32)
Note that in the case of %z
, a contiguous block of memory is allocated
and its size is a runtime multiple of a 32-bit REAL value.
In the case of %w
, the arguments %i
and %j
are LEN parameters
(len1
, len2
) to the type PT
.
Finally, the operation is undefined if the ssa-value %c
is negative.
Fortran Semantics:
There is no language mechanism in Fortran to allocate space on the stack
like C’s alloca()
function. Therefore fir.alloca is not control-flow
dependent. However, the lifetime of a stack allocation is often limited to
a small region and a legal implementation may reuse stack storage in other
regions when there is no conflict. For example, take the following code
fragment.
CALL foo(1)
CALL foo(2)
CALL foo(3)
A legal implementation can allocate a stack slot and initialize it with the
constant 1
, then pass that by reference to foo. Likewise for the second
and third calls to foo, each stack slot being initialized accordingly. It is
also a conforming implementation to reuse the same stack slot for all three
calls, just initializing each in turn. This is possible as the lifetime of
the copy of each constant need not exceed that of the CALL statement.
Indeed, a user would likely expect a good Fortran compiler to perform such
an optimization.
Stack allocations have a maximum lifetime concept: their uses must not exceed the lifetime of the closest parent operation with the AutomaticAllocationScope trait, IsIsolatedFromAbove trait, or LoopLikeOpInterface trait. This restriction is meant to ease the insertion of stack save and restore operations, and to ease the conversion of stack allocation into heap allocation.
Until Fortran 2018, procedures defaulted to non-recursive. A legal implementation could therefore convert stack allocations to global allocations. Such a conversion effectively adds the SAVE attribute to all variables.
Some temporary entities (large arrays) probably should not be stack allocated as stack space can often be limited. A legal implementation can convert these large stack allocations to heap allocations regardless of whether the procedure is recursive or not.
The pinned attribute is used to flag fir.alloca operation in a specific region and avoid them being hoisted in an alloca hoisting pass.
Traits: AttrSizedOperandSegments
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Allocate on ::mlir::SideEffects::AutomaticAllocationScopeResource}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
in_type | ::mlir::TypeAttr | any type attribute |
uniq_name | ::mlir::StringAttr | string attribute |
bindc_name | ::mlir::StringAttr | string attribute |
pinned | ::mlir::UnitAttr | unit attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of any integer |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
Reference to an entity type |
fir.array_access
(::fir::ArrayAccessOp)¶
Fetch the reference of an element of an array value
Syntax:
operation ::= `fir.array_access` $sequence `,` $indices (`typeparams` $typeparams^)? attr-dict `:`
functional-type(operands, results)
The array_access
provides a reference to a single element from an array
value. This is not a view in the immutable array, otherwise it couldn’t
be stored to. It can be see as a logical copy of the element and its
position in the array. This reference can be written to and modified without
changing the original array.
The array_access
operation is used to fetch the memory reference of an
element in an array value.
real :: a(n,m)
...
... a ...
... a(r,s+1) ...
One can use fir.array_access
to recover the implied memory reference to
the element a(i,j)
in an array expression a
as shown above. It can also
be used to recover the reference element a(r,s+1)
in the second
expression.
%s = fir.shape %n, %m : (index, index) -> !fir.shape<2>
// load the entire array 'a'
%v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32>
// fetch the value of one of the array value's elements
%1 = fir.array_access %v, %i, %j : (!fir.array<?x?xf32>, index, index) -> !fir.ref<f32>
It is only possible to use array_access
on an array_load
result value or
a value that can be trace back transitively to an array_load
as the
dominating source. Other array operation such as array_amend
can be in
between.
TODO: The above restriction is not enforced. The design of the operation might need to be revisited to avoid such restrictions.
More information about array_access
and other array operations can be
found in flang/docs/FIRArrayOperations.md.
Traits: AttrSizedOperandSegments
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
FIR array type |
|
variadic of coordinate type |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
|
Reference to an entity type |
fir.array_amend
(::fir::ArrayAmendOp)¶
Mark an array value as having been changed by reference.
Syntax:
operation ::= `fir.array_amend` $sequence `,` $memref attr-dict `:` functional-type(operands, results)
The array_amend
operation marks an array value as having been changed via
a reference obtained by an array_access
. It acts as a logical transaction
log that is used to merge the final result back with an array_merge_store
operation.
// fetch the value of one of the array value's elements
%1 = fir.array_access %v, %i, %j : (!fir.array<?x?xT>, index, index) -> !fir.ref<T>
// modify the element by storing data using %1 as a reference
%2 = ... %1 ...
// mark the array value
%new_v = fir.array_amend %v, %2 : (!fir.array<?x?xT>, !fir.ref<T>) -> !fir.array<?x?xT>
More information about array_amend
and other array operations can be
found in flang/docs/FIRArrayOperations.md.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
FIR array type |
|
Reference to an entity type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
FIR array type |
fir.array_coor
(::fir::ArrayCoorOp)¶
Find the coordinate of an element of an array
Syntax:
operation ::= `fir.array_coor` $memref (`(`$shape^`)`)? (`[`$slice^`]`)? $indices (`typeparams`
$typeparams^)? attr-dict `:` functional-type(operands, results)
Compute the location of an element in an array when the shape of the array is only known at runtime.
This operation is intended to capture all the runtime values needed to compute the address of an array reference in a single high-level op. Given the following Fortran input:
real :: a(n,m)
...
... a(i,j) ...
One can use fir.array_coor
to determine the address of a(i,j)
.
%s = fir.shape %n, %m : (index, index) -> !fir.shape<2>
%1 = fir.array_coor %a(%s) %i, %j : (!fir.ref<!fir.array<?x?xf32>>, !fir.shape<2>, index, index) -> !fir.ref<f32>
Traits: AttrSizedOperandSegments
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
any reference or box |
|
any legal shape or shift type |
|
FIR slice |
|
variadic of coordinate type |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
Reference to an entity type |
fir.array_fetch
(::fir::ArrayFetchOp)¶
Fetch the value of an element of an array value
Syntax:
operation ::= `fir.array_fetch` $sequence `,` $indices (`typeparams` $typeparams^)? attr-dict `:`
functional-type(operands, results)
Fetch the value of an element in an array value.
real :: a(n,m)
...
... a ...
... a(r,s+1) ...
One can use fir.array_fetch
to fetch the (implied) value of a(i,j)
in
an array expression as shown above. It can also be used to extract the
element a(r,s+1)
in the second expression.
%s = fir.shape %n, %m : (index, index) -> !fir.shape<2>
// load the entire array 'a'
%v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32>
// fetch the value of one of the array value's elements
%1 = fir.array_fetch %v, %i, %j : (!fir.array<?x?xf32>, index, index) -> f32
It is only possible to use array_fetch
on an array_load
result value.
Traits: AttrSizedOperandSegments
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
FIR array type |
|
variadic of coordinate type |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
|
any type |
fir.array_load
(::fir::ArrayLoadOp)¶
Load an array as a value.
Syntax:
operation ::= `fir.array_load` $memref (`(`$shape^`)`)? (`[`$slice^`]`)? (`typeparams` $typeparams^)?
attr-dict `:` functional-type(operands, results)
This operation taken with array_merge_store captures Fortran’s copy-in/copy-out semantics. One way to think of this is that array_load creates a snapshot copy of the entire array. This copy can then be used as the “original value” of the array while the array’s new value is computed. The array_merge_store operation is the copy-out semantics, which merge the updates with the original array value to produce the final array result. This abstracts the copy operations as opposed to always creating copies or requiring dependence analysis be performed on the syntax trees and before lowering to the IR.
Load an entire array as a single SSA value.
real :: a(o:n,p:m)
...
... = ... a ...
One can use fir.array_load
to produce an ssa-value that captures an
immutable value of the entire array a
, as in the Fortran array expression
shown above. Subsequent changes to the memory containing the array do not
alter its composite value. This operation lets one load an array as a
value while applying a runtime shape, shift, or slice to the memory
reference, and its semantics guarantee immutability.
%s = fir.shape_shift %o, %n, %p, %m : (index, index, index, index) -> !fir.shapeshift<2>
// load the entire array 'a'
%v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?x?xf32>>, !fir.shapeshift<2>) -> !fir.array<?x?xf32>
// a fir.store here into array %a does not change %v
Traits: AttrSizedOperandSegments
Operands:¶
Operand |
Description |
---|---|
|
any reference or box |
|
any legal shape or shift type |
|
FIR slice |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
FIR array type |
fir.array_merge_store
(::fir::ArrayMergeStoreOp)¶
Store merged array value to memory.
Syntax:
operation ::= `fir.array_merge_store` $original `,` $sequence `to` $memref (`[` $slice^ `]`)? (`typeparams`
$typeparams^)? attr-dict `:` type(operands)
Store a merged array value to memory.
real :: a(n,m)
...
a = ...
One can use fir.array_merge_store
to merge/copy the value of a
in an
array expression as shown above.
%v = fir.array_load %a(%shape) : ...
%r = fir.array_update %v, %f, %i, %j : (!fir.array<?x?xf32>, f32, index, index) -> !fir.array<?x?xf32>
fir.array_merge_store %v, %r to %a : !fir.ref<!fir.array<?x?xf32>>
This operation merges the original loaded array value, %v
, with the
chained updates, %r
, and stores the result to the array at address, %a
.
Traits: AttrSizedOperandSegments
Operands:¶
Operand |
Description |
---|---|
|
FIR array type |
|
FIR array type |
|
any reference or box |
|
FIR slice |
|
variadic of any integer |
fir.array_modify
(::fir::ArrayModifyOp)¶
Get an address for an array value to modify it.
Syntax:
operation ::= `fir.array_modify` $sequence `,` $indices (`typeparams` $typeparams^)? attr-dict
`:` functional-type(operands, results)
Modify the value of an element in an array value through actions done on the returned address. A new array value is also returned where all element values of the input array are identical except for the selected element which is the value after the modification done on the element address.
real :: a(n)
...
! Elemental user defined assignment from type(SomeType) to real.
a = value_of_some_type
One can use fir.array_modify
to update the (implied) value of a(i)
in an array expression as shown above.
%s = fir.shape %n : (index) -> !fir.shape<1>
// Load the entire array 'a'.
%v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?xf32>>, !fir.shape<1>) -> !fir.array<?xf32>
// Update the value of one of the array value's elements with a user
// defined assignment from %rhs.
%new = fir.do_loop %i = ... (%inner = %v) {
%rhs = ...
%addr, %r = fir.array_modify %inner, %i : (!fir.array<?xf32>, index) -> (fir.ref<f32>, !fir.array<?xf32>)
fir.call @user_def_assign(%addr, %rhs) (fir.ref<f32>, fir.ref<!fir.type<SomeType>>) -> ()
fir.result %r : !fir.ref<!fir.array<?xf32>>
}
fir.array_merge_store %v, %new to %a : !fir.ref<!fir.array<?xf32>>
An array value modification behaves as if a mapping function from the indices
to the new value has been added, replacing the previous mapping. These
mappings can be added to the ssa-value, but will not be materialized in
memory until the fir.array_merge_store
is performed.
Traits: AttrSizedOperandSegments
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
FIR array type |
|
variadic of coordinate type |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
Reference to an entity type |
«unnamed» |
FIR array type |
fir.array_update
(::fir::ArrayUpdateOp)¶
Update the value of an element of an array value
Syntax:
operation ::= `fir.array_update` $sequence `,` $merge `,` $indices (`typeparams` $typeparams^)? attr-dict
`:` functional-type(operands, results)
Updates the value of an element in an array value. A new array value is returned where all element values of the input array are identical except for the selected element which is the value passed in the update.
real :: a(n,m)
...
a = ...
One can use fir.array_update
to update the (implied) value of a(i,j)
in an array expression as shown above.
%s = fir.shape %n, %m : (index, index) -> !fir.shape<2>
// load the entire array 'a'
%v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32>
// update the value of one of the array value's elements
// %r_{ij} = %f if (i,j) = (%i,%j), %v_{ij} otherwise
%r = fir.array_update %v, %f, %i, %j : (!fir.array<?x?xf32>, f32, index, index) -> !fir.array<?x?xf32>
fir.array_merge_store %v, %r to %a : !fir.ref<!fir.array<?x?xf32>>
An array value update behaves as if a mapping function from the indices
to the new value has been added, replacing the previous mapping. These
mappings can be added to the ssa-value, but will not be materialized in
memory until the fir.array_merge_store
is performed.
Traits: AttrSizedOperandSegments
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
FIR array type |
|
any type |
|
variadic of coordinate type |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
FIR array type |
fir.box_addr
(::fir::BoxAddrOp)¶
Return a memory reference to the boxed value
Syntax:
operation ::= `fir.box_addr` operands attr-dict `:` functional-type(operands, results)
This operator is overloaded to work with values of type box
,
boxchar
, and boxproc
. The result for each of these
cases, respectively, is the address of the data, the address of the
CHARACTER
data, and the address of the procedure.
%51 = fir.box_addr %box : (!fir.box<f64>) -> !fir.ref<f64>
%52 = fir.box_addr %boxchar : (!fir.boxchar<1>) -> !fir.ref<!fir.char<1>>
%53 = fir.box_addr %boxproc : (!fir.boxproc<!P>) -> !P
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
any box |
Results:¶
Result |
Description |
---|---|
«unnamed» |
any code or data reference |
fir.boxchar_len
(::fir::BoxCharLenOp)¶
Return the LEN type parameter from a boxchar value
Syntax:
operation ::= `fir.boxchar_len` operands attr-dict `:` functional-type(operands, results)
Extracts the LEN type parameter from a boxchar
value.
%45 = ... : !boxchar<1> // CHARACTER(20)
%59 = fir.boxchar_len %45 : (!fir.boxchar<1>) -> i64 // len=20
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
CHARACTER type descriptor. |
Results:¶
Result |
Description |
---|---|
«unnamed» |
any integer |
fir.box_dims
(::fir::BoxDimsOp)¶
Return the dynamic dimension information for the boxed value
Syntax:
operation ::= `fir.box_dims` $val `,` $dim attr-dict `:` functional-type(operands, results)
Returns the triple of lower bound, extent, and stride for dim
dimension
of val
, which must have a box
type. The dimensions are enumerated from
left to right from 0 to rank-1. This operation has undefined behavior if
dim
is out of bounds.
%c1 = arith.constant 0 : i32
%52:3 = fir.box_dims %40, %c1 : (!fir.box<!fir.array<*:f64>>, i32) -> (index, index, index)
The above is a request to return the left most row (at index 0) triple from the box. The triple will be the lower bound, extent, and byte-stride, which are the values encoded in a standard descriptor.
Interfaces: InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
box or class |
|
any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
index |
«unnamed» |
index |
«unnamed» |
index |
fir.box_elesize
(::fir::BoxEleSizeOp)¶
Return the size of an element of the boxed value
Syntax:
operation ::= `fir.box_elesize` operands attr-dict `:` functional-type(operands, results)
Returns the size of an element in an entity of box
type. This size may
not be known until runtime.
%53 = fir.box_elesize %40 : (!fir.box<f32>) -> i32 // size=4
%54 = fir.box_elesize %40 : (!fir.box<!fir.array<*:f32>>) -> i32
In the above example, %53
may box an array of REAL values while %54
must box an array of REAL values (with dynamic rank and extent).
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
box or class |
Results:¶
Result |
Description |
---|---|
«unnamed» |
any integer |
fir.box_isalloc
(::fir::BoxIsAllocOp)¶
Is the boxed value an ALLOCATABLE?
Syntax:
operation ::= `fir.box_isalloc` operands attr-dict `:` functional-type(operands, results)
Determine if the boxed value was from an ALLOCATABLE entity. This will
return true if the originating box value was from a fir.embox
op
with a mem-ref value that had the type !fir.heap
%r = ... : !fir.heap<i64>
%b = fir.embox %r : (!fir.heap<i64>) -> !fir.box<i64>
%a = fir.box_isalloc %b : (!fir.box<i64>) -> i1 // true
The canonical descriptor implementation will carry a flag to record if the
variable is an ALLOCATABLE
.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
The type of a Fortran descriptor |
Results:¶
Result |
Description |
---|---|
«unnamed» |
bool-like |
fir.box_isarray
(::fir::BoxIsArrayOp)¶
Is the boxed value an array?
Syntax:
operation ::= `fir.box_isarray` operands attr-dict `:` functional-type(operands, results)
Determine if the boxed value has a positive (> 0) rank. This will return
true if the originating box value was from a fir.embox with a memory
reference value that had the type !fir.array
%r = ... : !fir.ref<i64>
%c_100 = arith.constant 100 : index
%d = fir.shape %c_100 : (index) -> !fir.shape<1>
%b = fir.embox %r(%d) : (!fir.ref<i64>, !fir.shape<1>) -> !fir.box<i64>
%a = fir.box_isarray %b : (!fir.box<i64>) -> i1 // true
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
The type of a Fortran descriptor |
Results:¶
Result |
Description |
---|---|
«unnamed» |
bool-like |
fir.box_isptr
(::fir::BoxIsPtrOp)¶
Is the boxed value a POINTER?
Syntax:
operation ::= `fir.box_isptr` operands attr-dict `:` functional-type(operands, results)
Determine if the boxed value was from a POINTER entity.
%p = ... : !fir.ptr<i64>
%b = fir.embox %p : (!fir.ptr<i64>) -> !fir.box<i64>
%a = fir.box_isptr %b : (!fir.box<i64>) -> i1 // true
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
The type of a Fortran descriptor |
Results:¶
Result |
Description |
---|---|
«unnamed» |
bool-like |
fir.box_offset
(::fir::BoxOffsetOp)¶
Get the address of a field in a fir.ref<fir.box>
Syntax:
operation ::= `fir.box_offset` $box_ref $field attr-dict `:` functional-type(operands, results)
Given the address of a fir.box, compute the address of a field inside the fir.box. This allows keeping the actual runtime descriptor layout abstract in FIR while providing access to the pointer addresses in the runtime descriptor for OpenMP/OpenACC target mapping.
To avoid requiring too much information about the fields that the runtime descriptor implementation must have, only the base_addr and derived_type descriptor fields can be addressed.
%addr = fir.box_offset %box base_addr : (!fir.ref<!fir.box<!fir.array<?xi32>>>) -> !fir.llvm_ptr<!fir.ref<!fir.array<?xi32>>>
%tdesc = fir.box_offset %box derived_type : (!fir.ref<!fir.box<!fir.type<t>>>) -> !fir.llvm_ptr<!fir.tdesc<!fir.type<t>>>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
field | fir::BoxFieldAttrAttr | allowed 32-bit signless integer cases: 0, 1 |
Operands:¶
Operand |
Description |
---|---|
|
any reference |
Results:¶
Result |
Description |
---|---|
«unnamed» |
fir.ref or fir.llvm_ptr |
fir.boxproc_host
(::fir::BoxProcHostOp)¶
Returns the host instance pointer (or null)
Syntax:
operation ::= `fir.boxproc_host` operands attr-dict `:` functional-type(operands, results)
Extract the host context pointer from a boxproc value.
%8 = ... : !fir.boxproc<(!fir.ref<!fir.type<T>>) -> i32>
%9 = fir.boxproc_host %8 : (!fir.boxproc<(!fir.ref<!fir.type<T>>) -> i32>) -> !fir.ref<tuple<i32, i32>>
In the example, the reference to the closure over the host procedure’s variables is returned. This allows an internal procedure to access the host’s variables. It is up to lowering to determine the contract between the host and the internal procedure.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
Results:¶
Result |
Description |
---|---|
«unnamed» |
Reference to an entity type |
fir.box_rank
(::fir::BoxRankOp)¶
Return the number of dimensions for the boxed value
Syntax:
operation ::= `fir.box_rank` operands attr-dict `:` functional-type(operands, results)
Return the rank of a value of box
type. If the value is scalar, the
rank is 0.
%57 = fir.box_rank %40 : (!fir.box<!fir.array<*:f64>>) -> i32
%58 = fir.box_rank %41 : (!fir.box<f64>) -> i32
The example %57
shows how one would determine the rank of an array that
has deferred rank at runtime. This rank should be at least 1. In %58, the
descriptor may be either an array or a scalar, so the value is nonnegative.
Interfaces: MemoryEffectOpInterface
Operands:¶
Operand |
Description |
---|---|
|
fir.box or fir.class type or reference |
Results:¶
Result |
Description |
---|---|
«unnamed» |
any integer |
fir.box_typecode
(::fir::BoxTypeCodeOp)¶
Return the type code the boxed value
Syntax:
operation ::= `fir.box_typecode` operands attr-dict `:` functional-type(operands, results)
Returns the descriptor type code of an entity of box
type.
%1 = fir.box_typecode %0 : (!fir.box<T>) -> i32
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
box or class |
Results:¶
Result |
Description |
---|---|
«unnamed» |
any integer |
fir.box_tdesc
(::fir::BoxTypeDescOp)¶
Return the type descriptor for the boxed value
Syntax:
operation ::= `fir.box_tdesc` operands attr-dict `:` functional-type(operands, results)
Return the opaque type descriptor of a value of box
type. A type
descriptor is an implementation defined value that fully describes a type
to the Fortran runtime.
%7 = fir.box_tdesc %41 : (!fir.box<f64>) -> !fir.tdesc<f64>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
box or class |
Results:¶
Result |
Description |
---|---|
«unnamed» |
FIR Type descriptor type |
fir.call
(::fir::CallOp)¶
Call a procedure
Call the specified function or function reference.
Provides a custom parser and pretty printer to allow a more readable syntax
in the FIR dialect, e.g. fir.call @sub(%12)
or fir.call %20(%22,%23)
.
%a = fir.call %funcref(%arg0) : (!fir.ref<f32>) -> f32
%b = fir.call @function(%arg1, %arg2) : (!fir.ref<f32>, !fir.ref<f32>) -> f32
Interfaces: ArithFastMathInterface
, CallOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
callee | ::mlir::SymbolRefAttr | symbol reference attribute |
procedure_attrs | ::fir::FortranProcedureFlagsEnumAttr | Fortran procedure attributes |
fastmath | ::mlir::arith::FastMathFlagsAttr | Floating point fast math flags |
Operands:¶
Operand |
Description |
---|---|
|
variadic of any type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
variadic of any type |
fir.char_convert
(::fir::CharConvertOp)¶
Primitive to convert an entity of type CHARACTER from one KIND to a different KIND.
Syntax:
operation ::= `fir.char_convert` $from `for` $count `to` $to attr-dict `:` type(operands)
Copy a CHARACTER (must be in memory) of KIND k1 to a CHARACTER (also must be in memory) of KIND k2 where k1 != k2 and the buffers do not overlap. This latter restriction is unchecked, as the Fortran language definition eliminates the overlapping in memory case.
The number of code points copied is specified explicitly as the second argument. The length of the !fir.char type is ignored.
fir.char_convert %1 for %2 to %3 : !fir.ref<!fir.char<1,?>>, i32,
!fir.ref<!fir.char<2,20>>
Should future support for encodings other than ASCII be supported, codegen
can generate a call to a runtime helper routine which will map the code
points from UTF-8 to UCS-2, for example. Such remappings may not always
be possible as they may involve the creation of more code points than the
count
limit. These details are left as future to-dos.
Operands:¶
Operand |
Description |
---|---|
|
any reference |
|
any integer |
|
any reference |
fir.cmpc
(::fir::CmpcOp)¶
Complex floating-point comparison operator
A complex comparison to handle complex types found in FIR.
Traits: SameOperandsAndResultShape
, SameTypeOperands
Interfaces: ArithFastMathInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
fastmath | ::mlir::arith::FastMathFlagsAttr | Floating point fast math flags |
Operands:¶
Operand |
Description |
---|---|
|
any floating point complex type |
|
any floating point complex type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
any logical |
fir.convert
(::fir::ConvertOp)¶
Encapsulates all Fortran entity type conversions
Syntax:
operation ::= `fir.convert` $value attr-dict `:` functional-type($value, results)
Generalized type conversion. Convert the ssa-value from type T to type U. Not all pairs of types have conversions. When types T and U are the same type, this instruction is a NOP and may be folded away. This also supports integer to pointer conversion and pointer to integer conversion.
This operation also allows limited interaction between FIR and LLVM dialects by allowing conversion between FIR pointer types and llvm.ptr type.
%v = ... : i64
%w = fir.convert %v : (i64) -> i32
The example truncates the value %v
from an i64 to an i32.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
any type |
Results:¶
Result |
Description |
---|---|
|
any type |
fir.coordinate_of
(::fir::CoordinateOp)¶
Finds the coordinate (location) of a value in memory
Compute the internal coordinate address starting from a boxed value or unboxed memory reference. Returns a memory reference. When computing the coordinate of an array element, the rank of the array must be known and the number of indexing expressions must not exceed the rank of the array.
This operation will apply the access map from a boxed value implicitly.
Unlike LLVM’s GEP instruction, one cannot stride over the outermost reference; therefore, the leading 0 index must be omitted.
%i = ... : index
%h = ... : !fir.heap<!fir.array<100 x f32>>
%p = fir.coordinate_of %h, %i : (!fir.heap<!fir.array<100 x f32>>, index) -> !fir.ref<f32>
In the example, %p
will be a pointer to the %i
-th f32 value in the
array %h
.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
baseType | ::mlir::TypeAttr | any type attribute |
Operands:¶
Operand |
Description |
---|---|
|
any reference or box |
|
variadic of coordinate type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
fir.ref or fir.llvm_ptr |
fir.dt_component
(::fir::DTComponentOp)¶
Define extra information about a component inside fir.type_info
Syntax:
operation ::= `fir.dt_component` $name (`lbs` $lower_bounds^)? (`init` $init_val^)? attr-dict
fir.dt_component i lbs [-1,2] init @init_val
Traits: HasParent<TypeInfoOp>
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
name | ::mlir::StringAttr | string attribute |
lower_bounds | ::mlir::DenseI64ArrayAttr | i64 dense array attribute |
init_val | ::mlir::FlatSymbolRefAttr | flat symbol reference attribute |
fir.dt_entry
(::fir::DTEntryOp)¶
Map entry in a dispatch table
An entry in a dispatch table. Allows a function symbol to be bound to a specifier method identifier. A dispatch operation uses the dynamic type of a distinguished argument to determine an exact dispatch table and uses the method identifier to select the type-bound procedure to be called.
fir.dt_entry method_name, @uniquedProcedure
Traits: HasParent<TypeInfoOp>
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
method | ::mlir::StringAttr | string attribute |
proc | ::mlir::SymbolRefAttr | symbol reference attribute |
fir.declare
(::fir::DeclareOp)¶
Declare a variable
Syntax:
operation ::= `fir.declare` $memref (`(` $shape^ `)`)? (`typeparams` $typeparams^)?
(`dummy_scope` $dummy_scope^)?
attr-dict `:` functional-type(operands, results)
Tie the properties of a Fortran variable to an address. The properties include bounds, length parameters, and Fortran attributes.
The memref argument describes the storage of the variable. It may be a
raw address (fir.ref
The shape argument encodes explicit extents and lower bounds. It must be provided if the memref is the raw address of an array. The shape argument must not be provided if memref operand is a box or class value or address, unless the shape is a shift (encodes lower bounds) and the memref if a box value (this covers assumed shapes with local lower bounds).
The typeparams values are meant to carry the non-deferred length parameters (this includes both Fortran assumed and explicit length parameters). It must always be provided for characters and parametrized derived types when memref is not a box value or address.
Example:
CHARACTER(n), OPTIONAL, TARGET :: c(10:, 20:)
Can be represented as:
func.func @foo(%arg0: !fir.box<!fir.array<?x?x!fir.char<1,?>>>, %arg1: !fir.ref<i64>) {
%c10 = arith.constant 10 : index
%c20 = arith.constant 20 : index
%1 = fir.load %ag1 : fir.ref<i64>
%2 = fir.shift %c10, %c20 : (index, index) -> !fir.shift<2>
%3 = fir.declare %arg0(%2) typeparams %1 {fortran_attrs = #fir.var_attrs<optional, target>, uniq_name = "c"}
// ... uses %3 as "c"
}
Traits: AttrSizedOperandSegments
Interfaces: FortranVariableOpInterface
, MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Allocate on ::fir::DebuggingResource}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
uniq_name | ::mlir::StringAttr | An Attribute containing a string |
fortran_attrs | ::fir::FortranVariableFlagsAttr | |
data_attr | ::cuf::DataAttributeAttr | CUDA Fortran variable attributes |
Operands:¶
Operand |
Description |
---|---|
|
any reference or box |
|
any legal shape or shift type |
|
variadic of any integer |
|
Dummy scope type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
any reference or box |
fir.dispatch
(::fir::DispatchOp)¶
Call a type-bound procedure
Syntax:
operation ::= `fir.dispatch` $method `(` $object `:` qualified(type($object)) `)`
( `(` $args^ `:` type($args) `)` )? (`->` type($results)^)?
(`proc_attrs` $procedure_attrs^)? attr-dict
Perform a dynamic dispatch on the method name via the dispatch table
associated with the first operand. The attribute pass_arg_pos
can be
used to select a dispatch operand other than the first one. The absence of
pass_arg_pos
attribute means nopass.
// fir.dispatch with no attribute.
%r = fir.dispatch "methodA"(%o) : (!fir.class<T>) -> i32
// fir.dispatch with the `pass_arg_pos` attribute.
%r = fir.dispatch "methodA"(%o : !fir.class<T>) (%o : !fir.class<T>) -> i32 {pass_arg_pos = 0 : i32}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
method | ::mlir::StringAttr | string attribute |
pass_arg_pos | ::mlir::IntegerAttr | 32-bit signless integer attribute |
procedure_attrs | ::fir::FortranProcedureFlagsEnumAttr | Fortran procedure attributes |
Operands:¶
Operand |
Description |
---|---|
|
Class type |
|
variadic of any type |
Results:¶
Result |
Description |
---|---|
|
variadic of any type |
fir.divc
(::fir::DivcOp)¶
Syntax:
operation ::= `fir.divc` operands attr-dict `:` type($result)
Traits: SameOperandsAndResultType
Interfaces: ArithFastMathInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
fastmath | ::mlir::arith::FastMathFlagsAttr | Floating point fast math flags |
Operands:¶
Operand |
Description |
---|---|
|
any floating point complex type |
|
any floating point complex type |
Results:¶
Result |
Description |
---|---|
|
any type |
fir.do_loop
(::fir::DoLoopOp)¶
Generalized loop operation
Generalized high-level looping construct. This operation is similar to
MLIR’s scf.for
.
%l = arith.constant 0 : index
%u = arith.constant 9 : index
%s = arith.constant 1 : index
fir.do_loop %i = %l to %u step %s unordered {
%x = fir.convert %i : (index) -> i32
%v = fir.call @compute(%x) : (i32) -> f32
%p = fir.coordinate_of %A, %i : (!fir.ref<!fir.array<?xf32>>, index) -> !fir.ref<f32>
fir.store %v to %p : !fir.ref<f32>
}
The above example iterates over the interval [%l, %u]
. The unordered
keyword indicates that the iterations can be executed in any order.
Traits: AttrSizedOperandSegments
, RecursiveMemoryEffects
, RecursivelySpeculatableImplTrait
, SingleBlockImplicitTerminator<ResultOp>
, SingleBlock
Interfaces: ConditionallySpeculatable
, LoopLikeOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
unordered | ::mlir::UnitAttr | unit attribute |
finalValue | ::mlir::UnitAttr | unit attribute |
reduceAttrs | ::mlir::ArrayAttr | array attribute |
loopAnnotation | ::mlir::LLVM::LoopAnnotationAttr |
Operands:¶
Operand |
Description |
---|---|
|
index |
|
index |
|
index |
|
variadic of any type |
|
variadic of any type |
Results:¶
Result |
Description |
---|---|
|
variadic of any type |
fir.dummy_scope
(::fir::DummyScopeOp)¶
Define a scope for dummy arguments
Syntax:
operation ::= `fir.dummy_scope` attr-dict `:` type(results)
An abstract handle to be used to associate dummy arguments of the same subroutine between each other. By lowering, all [hl]fir.declare operations representing declarations of dummy arguments of a subroutine use the result of this operation. This allows recognizing the references of these dummy arguments as belonging to the same runtime instance of the subroutine even after MLIR inlining. Thus, the Fortran aliasing rules might be applied to those references based on the original declarations of the dummy arguments. For example:
subroutine test(x, y)
real, target :: x, y
x = y ! may alias
call inner(x, y)
contains
subroutine inner(x, y)
real :: x, y
x = y ! may not alias
end subroutine inner
end subroutine test
After MLIR inlining this may look like this:
func.func @_QPtest(
%arg0: !fir.ref<f32> {fir.target},
%arg1: !fir.ref<f32> {fir.target}) {
%0 = fir.declare %arg0 {fortran_attrs = #fir.var_attrs<target>} :
(!fir.ref<f32>) -> !fir.ref<f32>
%1 = fir.declare %arg1 {fortran_attrs = #fir.var_attrs<target>} :
(!fir.ref<f32>) -> !fir.ref<f32>
%2 = fir.load %1 : !fir.ref<f32>
fir.store %2 to %0 : !fir.ref<f32>
%3 = fir.declare %0 : (!fir.ref<f32>) -> !fir.ref<f32>
%4 = fir.declare %1 : (!fir.ref<f32>) -> !fir.ref<f32>
%5 = fir.load %4 : !fir.ref<f32>
fir.store %5 to %3 : !fir.ref<f32>
return
}
Without marking %3 and %4 as declaring the dummy arguments
of the same runtime instance of inner
subroutine the FIR
AliasAnalysis cannot deduce non-aliasing for the second load/store pair.
This information may be preserved by using fir.dummy_scope operation:
func.func @_QPtest(
%arg0: !fir.ref<f32> {fir.target},
%arg1: !fir.ref<f32> {fir.target}) {
%h1 = fir.dummy_scope : i1
%0 = fir.declare %arg0 dummy_scope(%h1)
{fortran_attrs = #fir.var_attrs<target>} :
(!fir.ref<f32>) -> !fir.ref<f32>
%1 = fir.declare %arg1 dummy_scope(%h1)
{fortran_attrs = #fir.var_attrs<target>} :
(!fir.ref<f32>) -> !fir.ref<f32>
%2 = fir.load %1 : !fir.ref<f32>
fir.store %2 to %0 : !fir.ref<f32>
%h2 = fir.dummy_scope : i1
%3 = fir.declare %0 dummy_scope(%h2) : (!fir.ref<f32>) -> !fir.ref<f32>
%4 = fir.declare %1 dummy_scope(%h2) : (!fir.ref<f32>) -> !fir.ref<f32>
%5 = fir.load %4 : !fir.ref<f32>
fir.store %5 to %3 : !fir.ref<f32>
return
}
Note that even if inner
is called and inlined twice inside
test
, the two inlined instances of inner
must use two different
fir.dummy_scope operations for their fir.declare ops. This
two distinct fir.dummy_scope must remain distinct during the optimizations.
This is guaranteed by the write memory effect on the DebuggingResource.
Interfaces: InferTypeOpInterface
, MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Write on ::fir::DebuggingResource}
Results:¶
Result |
Description |
---|---|
«unnamed» |
Dummy scope type |
fir.emboxchar
(::fir::EmboxCharOp)¶
Boxes a given CHARACTER reference and its LEN parameter
Syntax:
operation ::= `fir.emboxchar` $memref `,` $len attr-dict `:` functional-type(operands, results)
Create a boxed CHARACTER value. The CHARACTER type has the LEN type parameter, the value of which may only be known at runtime. Therefore, a variable of type CHARACTER has both its data reference as well as a LEN type parameter.
CHARACTER(LEN=10) :: var
%4 = ... : !fir.ref<!fir.array<10 x !fir.char<1>>>
%5 = arith.constant 10 : i32
%6 = fir.emboxchar %4, %5 : (!fir.ref<!fir.array<10 x !fir.char<1>>>, i32) -> !fir.boxchar<1>
In the above %4
is a memory reference to a buffer of 10 CHARACTER units.
This buffer and its LEN value (10) are wrapped into a pair in %6
.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
any reference |
|
any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
CHARACTER type descriptor. |
fir.embox
(::fir::EmboxOp)¶
Boxes a given reference and (optional) dimension information
Syntax:
operation ::= `fir.embox` $memref (`(` $shape^ `)`)? (`[` $slice^ `]`)? (`typeparams` $typeparams^)?
(`source_box` $sourceBox^)? (`map` $accessMap^)? attr-dict `:`
functional-type(operands, results)
Create a boxed reference value. In Fortran, the implementation can require extra information about an entity, such as its type, rank, etc. This auxiliary information is packaged and abstracted as a value with box type by the calling routine. (In Fortran, these are called descriptors.)
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%5 = ... : !fir.ref<!fir.array<10 x i32>>
%6 = fir.embox %5 : (!fir.ref<!fir.array<10 x i32>>) -> !fir.box<!fir.array<10 x i32>>
The descriptor tuple may contain additional implementation-specific information through the use of additional attributes. Specifically, - shape: emboxing an array may require shape information (an array’s lower bounds and extents may not be known until runtime), - slice: an array section can be described with a slice triple, - typeparams: for emboxing a derived type with LEN type parameters, - sourceBox: A box to read information from such as CFI type, type descriptor or element size to populate the new descriptor. - accessMap: unused/experimental. - allocator_idx: specify special allocator to use.
Traits: AttrSizedOperandSegments
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
accessMap | ::mlir::AffineMapAttr | AffineMap attribute |
allocator_idx | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:¶
Operand |
Description |
---|---|
|
any reference |
|
any legal shape type |
|
FIR slice |
|
variadic of any integer |
|
Class type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
box or class |
fir.emboxproc
(::fir::EmboxProcOp)¶
Boxes a given procedure and optional host context
Syntax:
operation ::= `fir.emboxproc` $func (`,` $host^)? attr-dict `:` functional-type(operands, results)
Creates an abstract encapsulation of a PROCEDURE POINTER along with an optional pointer to a host instance context. If the pointer is not to an internal procedure or the internal procedure does not need a host context then the form takes only the procedure’s symbol.
%f = ... : (i32) -> i32
%0 = fir.emboxproc %f : ((i32) -> i32) -> !fir.boxproc<(i32) -> i32>
An internal procedure requiring a host instance for correct execution uses the second form. The closure of the host procedure’s state is passed as a reference to a tuple. It is the responsibility of the host to manage the context’s values accordingly, up to and including inhibiting register promotion of local values.
%4 = ... : !fir.ref<tuple<!fir.ref<i32>, !fir.ref<i32>>>
%g = ... : (i32) -> i32
%5 = fir.emboxproc %g, %4 : ((i32) -> i32, !fir.ref<tuple<!fir.ref<i32>, !fir.ref<i32>>>) -> !fir.boxproc<(i32) -> i32>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
function type |
|
Reference to an entity type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
fir.extract_value
(::fir::ExtractValueOp)¶
Extract a value from an aggregate SSA-value
Syntax:
operation ::= `fir.extract_value` $adt `,` $coor attr-dict `:` functional-type(operands, results)
Extract a value from an entity with a type composed of tuples, arrays,
and/or derived types. Returns the value from entity with the type of the
specified component. Cannot be used on values of !fir.box
type.
It can also be used to access complex parts and elements of a character
string.
Note that the entity ssa-value must be of compile-time known size in order to use this operation.
%f = fir.field_index field, !fir.type<X{field:i32}>
%s = ... : !fir.type<X>
%v = fir.extract_value %s, %f : (!fir.type<X>, !fir.field) -> i32
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
coor | ::mlir::ArrayAttr | array attribute |
Operands:¶
Operand |
Description |
---|---|
|
any composite |
Results:¶
Result |
Description |
---|---|
|
FIR dialect type |
fir.field_index
(::fir::FieldIndexOp)¶
Create a field index value from a field identifier
Generate a field (offset) value from an identifier. Field values may be
lowered into exact offsets when the layout of a Fortran derived type is
known at compile-time. The type of a field value is !fir.field
and
these values can be used with the fir.coordinate_of
, fir.extract_value
,
or fir.insert_value
instructions to compute (abstract) addresses of
subobjects.
%f = fir.field_index field, !fir.type<X{field:i32}>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
field_id | ::mlir::StringAttr | string attribute |
on_type | ::mlir::TypeAttr | any type attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
|
FIR dialect type |
fir.end
(::fir::FirEndOp)¶
The end instruction
The end terminator is a special terminator used inside various FIR operations that have regions. End is thus the custom invisible terminator for these operations. It is implicit and need not appear in the textual representation.
Traits: Terminator
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
fir.freemem
(::fir::FreeMemOp)¶
Free a heap object
Syntax:
operation ::= `fir.freemem` $heapref attr-dict `:` qualified(type($heapref))
Deallocates a heap memory reference that was allocated by an allocmem
.
The memory object that is deallocated is placed in an undefined state
after fir.freemem
. Optimizations may treat the loading of an object
in the undefined state as undefined behavior. This includes aliasing
references, such as the result of an fir.embox
.
%21 = fir.allocmem !fir.type<ZT(p:i32){field:i32}>
...
fir.freemem %21 : !fir.heap<!fir.type<ZT>>
Interfaces: MemoryEffectOpInterface (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{MemoryEffects::Free on ::mlir::SideEffects::DefaultResource}
Operands:¶
Operand |
Description |
---|---|
|
Reference to an ALLOCATABLE attribute type |
fir.global_len
(::fir::GlobalLenOp)¶
Map a LEN parameter to a global
A global entity (that is not an automatic data object) can have extra LEN
parameter (compile-time) constants associated with the instance’s type.
These values can be bound to the global instance used fir.global_len
.
global @g : !fir.type<t(len1:i32)> {
fir.global_len len1, 10 : i32
%1 = fir.undefined !fir.type<t(len1:i32)>
fir.has_value %1 : !fir.type<t(len1:i32)>
}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
lenparam | ::mlir::StringAttr | string attribute |
intval | ::mlir::IntegerAttr | arbitrary integer attribute |
fir.global
(::fir::GlobalOp)¶
Global data
A global variable or constant with initial values.
The example creates a global variable (writable) named
@_QV_Mquark_Vvarble
with some initial values. The initializer should
conform to the variable’s type.
fir.global @_QV_Mquark_Vvarble : tuple<i32, f32> {
%1 = arith.constant 1 : i32
%2 = arith.constant 2.0 : f32
%3 = fir.undefined tuple<i32, f32>
%z = arith.constant 0 : index
%o = arith.constant 1 : index
%4 = fir.insert_value %3, %1, %z : (tuple<i32, f32>, i32, index) -> tuple<i32, f32>
%5 = fir.insert_value %4, %2, %o : (tuple<i32, f32>, f32, index) -> tuple<i32, f32>
fir.has_value %5 : tuple<i32, f32>
}
Traits: IsolatedFromAbove
Interfaces: Symbol
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
sym_name | ::mlir::StringAttr | string attribute |
symref | ::mlir::SymbolRefAttr | symbol reference attribute |
type | ::mlir::TypeAttr | any type attribute |
initVal | ::mlir::Attribute | any attribute |
constant | ::mlir::UnitAttr | unit attribute |
target | ::mlir::UnitAttr | unit attribute |
linkName | ::mlir::StringAttr | string attribute |
data_attr | ::cuf::DataAttributeAttr | CUDA Fortran variable attributes |
alignment | ::mlir::IntegerAttr | 64-bit signless integer attribute |
fir.has_value
(::fir::HasValueOp)¶
Terminator for GlobalOp
Syntax:
operation ::= `fir.has_value` $resval attr-dict `:` type($resval)
The terminator for a GlobalOp with a body.
global @variable : tuple<i32, f32> {
%0 = arith.constant 45 : i32
%1 = arith.constant 100.0 : f32
%2 = fir.undefined tuple<i32, f32>
%3 = arith.constant 0 : index
%4 = fir.insert_value %2, %0, %3 : (tuple<i32, f32>, i32, index) -> tuple<i32, f32>
%5 = arith.constant 1 : index
%6 = fir.insert_value %4, %1, %5 : (tuple<i32, f32>, f32, index) -> tuple<i32, f32>
fir.has_value %6 : tuple<i32, f32>
}
Traits: HasParent<GlobalOp>
, Terminator
Operands:¶
Operand |
Description |
---|---|
|
any type |
fir.if
(::fir::IfOp)¶
If-then-else conditional operation
Used to conditionally execute operations. This operation is the FIR
dialect’s version of loop.if
.
%56 = ... : i1
%78 = ... : !fir.ref<!T>
fir.if %56 {
fir.store %76 to %78 : !fir.ref<!T>
} else {
fir.store %77 to %78 : !fir.ref<!T>
}
Traits: NoRegionArguments
, RecursiveMemoryEffects
, RecursivelySpeculatableImplTrait
, SingleBlockImplicitTerminator<ResultOp>
, SingleBlock
Interfaces: ConditionallySpeculatable
, RegionBranchOpInterface
Operands:¶
Operand |
Description |
---|---|
|
1-bit signless integer |
Results:¶
Result |
Description |
---|---|
|
variadic of any type |
fir.insert_on_range
(::fir::InsertOnRangeOp)¶
Insert sub-value into a range on an existing sequence
Syntax:
operation ::= `fir.insert_on_range` $seq `,` $val custom<CustomRangeSubscript>($coor) attr-dict `:` functional-type(operands, results)
Insert copies of a value into an entity with an array type of constant shape and size. Returns a new ssa-value with the same type as the original entity. The values are inserted at a contiguous range of indices in Fortran row-to-column element order as specified by lower and upper bound coordinates.
%a = fir.undefined !fir.array<10x10xf32>
%c = arith.constant 3.0 : f32
%1 = fir.insert_on_range %a, %c from (0, 0) to (7, 2) : (!fir.array<10x10xf32>, f32) -> !fir.array<10x10xf32>
The first 28 elements of %1, with coordinates from (0,0) to (7,2), have the value 3.0.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
coor | ::mlir::DenseIntElementsAttr | index elements attribute |
Operands:¶
Operand |
Description |
---|---|
|
FIR array type |
|
any type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
FIR array type |
fir.insert_value
(::fir::InsertValueOp)¶
Insert a new sub-value into a copy of an existing aggregate
Syntax:
operation ::= `fir.insert_value` $adt `,` $val `,` $coor attr-dict `:` functional-type(operands, results)
Insert a value into an entity with a type composed of tuples, arrays,
and/or derived types. Returns a new ssa-value with the same type as the
original entity. Cannot be used on values of !fir.box
type.
It can also be used to set complex parts and elements of a character
string.
Note that the entity ssa-value must be of compile-time known size in order to use this operation.
%a = ... : !fir.array<10xtuple<i32, f32>>
%f = ... : f32
%o = ... : i32
%c = arith.constant 1 : i32
%b = fir.insert_value %a, %f, %o, %c : (!fir.array<10x20xtuple<i32, f32>>, f32, i32, i32) -> !fir.array<10x20xtuple<i32, f32>>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
coor | ::mlir::ArrayAttr | array attribute |
Operands:¶
Operand |
Description |
---|---|
|
any composite |
|
any type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
any composite |
fir.is_assumed_size
(::fir::IsAssumedSizeOp)¶
Detect if a boxed value is an assumed-size array
Syntax:
operation ::= `fir.is_assumed_size` operands attr-dict `:` functional-type(operands, results)
Fir box SSA values may describe assumed-size arrays. This operation allows detecting this, even for assumed-rank box.
%a = fir.is_assumed_size %b : (!fir.box<!fir.array<*:f64>>) -> i1
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
box or class |
Results:¶
Result |
Description |
---|---|
«unnamed» |
bool-like |
fir.is_present
(::fir::IsPresentOp)¶
Is this optional function argument present?
Syntax:
operation ::= `fir.is_present` operands attr-dict `:` functional-type(operands, results)
Determine if an optional function argument is PRESENT (i.e. that it was not created by a fir.absent op on the caller side).
func @_QPfoo(%arg0: !fir.box<!fir.array<?xf32>>) {
%0 = fir.is_present %arg0 : (!fir.box<!fir.array<?xf32>>) -> i1
...
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
any reference or box like |
Results:¶
Result |
Description |
---|---|
«unnamed» |
bool-like |
fir.iterate_while
(::fir::IterWhileOp)¶
DO loop with early exit condition
This single-entry, single-exit looping construct is useful for lowering
counted loops that can exit early such as, for instance, implied-DO loops.
It is very similar to fir::DoLoopOp
with the addition that it requires
a single loop-carried bool value that signals an early exit condition to
the operation. A true
disposition means the next loop iteration should
proceed. A false
indicates that the fir.iterate_while
operation should
terminate and return its iteration arguments. This is a degenerate counted
loop in that the loop is not guaranteed to execute all iterations.
An example iterate_while that returns the counter value, the early termination condition, and an extra loop-carried value is shown here. This loop counts from %lo to %up (inclusive), stepping by %c1, so long as the early exit (%ok) is true. The iter_args %sh value is also carried by the loop. The result triple is the values of %i=phi(%lo,%i+%c1),
iteration.
%v:3 = fir.iterate_while (%i = %lo to %up step %c1) and (%ok = %okIn) iter_args(%sh = %shIn) -> (index, i1, i16) {
%shNew = fir.call @bar(%sh) : (i16) -> i16
%okNew = fir.call @foo(%sh) : (i16) -> i1
fir.result %i, %okNew, %shNew : index, i1, i16
}
Traits: RecursiveMemoryEffects
, RecursivelySpeculatableImplTrait
, SingleBlockImplicitTerminator<ResultOp>
, SingleBlock
Interfaces: ConditionallySpeculatable
, LoopLikeOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
finalValue | ::mlir::UnitAttr | unit attribute |
Operands:¶
Operand |
Description |
---|---|
|
index |
|
index |
|
index |
|
1-bit signless integer |
|
variadic of any type |
Results:¶
Result |
Description |
---|---|
|
variadic of any type |
fir.len_param_index
(::fir::LenParamIndexOp)¶
Create a field index value from a LEN type parameter identifier
Generate a LEN parameter (offset) value from a LEN parameter identifier.
The type of a LEN parameter value is !fir.len
and these values can be
used with the fir.coordinate_of
instructions to compute (abstract)
addresses of LEN parameters.
%e = fir.len_param_index len1, !fir.type<X(len1:i32)>
%p = ... : !fir.box<!fir.type<X>>
%q = fir.coordinate_of %p, %e : (!fir.box<!fir.type<X>>, !fir.len) -> !fir.ref<i32>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
field_id | ::mlir::StringAttr | string attribute |
on_type | ::mlir::TypeAttr | any type attribute |
Operands:¶
Operand |
Description |
---|---|
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
|
FIR dialect type |
fir.load
(::fir::LoadOp)¶
Load a value from a memory reference
Load a value from a memory reference into an ssa-value (virtual register).
Produces an immutable ssa-value of the referent type. A memory reference
has type !fir.ref<T>
, !fir.heap<T>
, or !fir.ptr<T>
.
%a = fir.alloca i32
%l = fir.load %a : !fir.ref<i32>
The ssa-value has an undefined value if the memory reference is undefined or null.
Interfaces: FirAliasTagOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
tbaa | ::mlir::ArrayAttr | LLVM dialect TBAA tag metadata array |
Operands:¶
Operand |
Description |
---|---|
|
any reference |
Results:¶
Result |
Description |
---|---|
|
FIR dialect type |
fir.mulc
(::fir::MulcOp)¶
Syntax:
operation ::= `fir.mulc` operands attr-dict `:` type($result)
Traits: Commutative
, SameOperandsAndResultType
Interfaces: ArithFastMathInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
fastmath | ::mlir::arith::FastMathFlagsAttr | Floating point fast math flags |
Operands:¶
Operand |
Description |
---|---|
|
any floating point complex type |
|
any floating point complex type |
Results:¶
Result |
Description |
---|---|
|
any type |
fir.negc
(::fir::NegcOp)¶
Syntax:
operation ::= `fir.negc` operands attr-dict `:` type($result)
Traits: SameOperandsAndResultType
Interfaces: InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
any floating point complex type |
Results:¶
Result |
Description |
---|---|
|
any type |
fir.no_reassoc
(::fir::NoReassocOp)¶
Synthetic op to prevent reassociation
Syntax:
operation ::= `fir.no_reassoc` $val attr-dict `:` type($val)
Primitive operation meant to intrusively prevent operator reassociation. The operation is otherwise a nop and the value returned is the same as the argument.
The presence of this operation prevents any local optimizations. In the example below, this would prevent possibly replacing the multiply and add operations with a single FMA operation.
%98 = arith.mulf %96, %97 : f32
%99 = fir.no_reassoc %98 : f32
%a0 = arith.addf %99, %95 : f32
Traits: SameOperandsAndResultType
Interfaces: InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
any type |
Results:¶
Result |
Description |
---|---|
|
FIR dialect type |
fir.rebox_assumed_rank
(::fir::ReboxAssumedRankOp)¶
Create an assumed-rank box given another assumed-rank box
Syntax:
operation ::= `fir.rebox_assumed_rank` $box `lbs` $lbs_modifier
attr-dict `:` functional-type(operands, results)
Limited version of fir.rebox for assumed-rank. Only the lower bounds, attribute, and element type may change.
The input may be a box or a reference to a box, in which case the operation reads the incoming reference. Since a fir.shift cannot be built without knowing the rank statically, lower bound changes are encoded via a LowerBoundModifierAttribute. Attribute and element type change are encoded in the result type. Changing the element type is only allowed if the input type is a derived type that extends the output element type.
Example:
fir.rebox_assumed_rank %1 lbs zeroes : (!fir.box<!fir.array<*:f32>>) -> !fir.box<!fir.array<*:f32>>
Interfaces: MemoryEffectOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
lbs_modifier | ::fir::LowerBoundModifierAttributeAttr | Describes how to modify lower bounds |
Operands:¶
Operand |
Description |
---|---|
|
any legal ref or box type |
Results:¶
Result |
Description |
---|---|
«unnamed» |
box or class |
fir.rebox
(::fir::ReboxOp)¶
Create a box given another box and (optional) dimension information
Syntax:
operation ::= `fir.rebox` $box (`(` $shape^ `)`)? (`[` $slice^ `]`)?
attr-dict `:` functional-type(operands, results)
Create a new boxed reference value from another box. This is meant to be used when the taking a reference to part of a boxed value, or to an entire boxed value with new shape or type information.
The new extra information can be:
new shape information (new lower bounds, new rank, or new extents. New rank/extents can only be provided if the original fir.box is contiguous in all dimension but maybe the first row). The shape operand must be provided to set new shape information.
new type (only for derived types). It is possible to set the dynamic type of the new box to one of the parent types of the input box dynamic type. Type parameters cannot be changed. This change is reflected in the requested result type of the new box.
A slice argument can be provided to build a reference to part of a boxed value. In this case, the shape operand must be absent or be a fir.shift that can be used to provide a non default origin for the slice.
The following example illustrates creating a fir.box for x(10:33:2) where x is described by a fir.box and has non default lower bounds, and then applying a new 2-dimension shape to this fir.box.
%0 = fir.slice %c10, %c33, %c2 : (index, index, index) -> !fir.slice<1>
%1 = fir.shift %c0 : (index) -> !fir.shift<1>
%2 = fir.rebox %x(%1) [%0] : (!fir.box<!fir.array<?xf32>>, !fir.shift<1>, !fir.slice<1>) -> !fir.box<!fir.array<?xf32>>
%3 = fir.shape %c3, %c4 : (index, index) -> !fir.shape<2>
%4 = fir.rebox %2(%3) : (!fir.box<!fir.array<?xf32>>, !fir.shape<2>) -> !fir.box<!fir.array<?x?xf32>>
Traits: AttrSizedOperandSegments
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
box or class |
|
any legal shape or shift type |
|
FIR slice |
Results:¶
Result |
Description |
---|---|
«unnamed» |
box or class |
fir.result
(::fir::ResultOp)¶
Special terminator for use in fir region operations
Syntax:
operation ::= `fir.result` ($results^ `:` type($results))? attr-dict
Result takes a list of ssa-values produced in the block and forwards them as a result to the operation that owns the region of the block. The operation can retain the values or return them to its parent block depending upon its semantics.
Traits: HasParent<IfOp, DoLoopOp, IterWhileOp>
, ReturnLike
, Terminator
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
, RegionBranchTerminatorOpInterface
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
variadic of any type |
fir.save_result
(::fir::SaveResultOp)¶
Save an array, box, or record function result SSA-value to a memory location
Syntax:
operation ::= `fir.save_result` $value `to` $memref (`(` $shape^ `)`)? (`typeparams` $typeparams^)?
attr-dict `:` type(operands)
Save the result of a function returning an array, box, or record type value into a memory location given the shape and LEN parameters of the result.
Function results of type fir.box, fir.array, or fir.rec are abstract values that require a storage to be manipulated on the caller side. This operation allows associating such abstract result to a storage. In later lowering of the function interfaces, this storage might be used to pass the result in memory.
For arrays, result, it is required to provide the shape of the result. For character arrays and derived types with LEN parameters, the LEN parameter values must be provided.
The fir.save_result associated to a function call must immediately follow the call and be in the same block.
%buffer = fir.alloca fir.array<?xf32>, %c100
%shape = fir.shape %c100
%array_result = fir.call @foo() : () -> fir.array<?xf32>
fir.save_result %array_result to %buffer(%shape)
%coor = fir.array_coor %buffer%(%shape), %c5
%fifth_element = fir.load %coor : f32
The above fir.save_result allows saving a fir.array function result into a buffer to later access its 5th element.
Traits: AttrSizedOperandSegments
Operands:¶
Operand |
Description |
---|---|
|
fir.box, fir.array or fir.type |
|
any reference |
|
any legal shape type |
|
variadic of any integer |
fir.select_case
(::fir::SelectCaseOp)¶
Fortran’s SELECT CASE statement
Similar to select
, select_case
provides a way to express Fortran’s
SELECT CASE construct. In this case, the selector value is matched
against variables (not just constants) and ranges. The structure is
the same as select
, but select_case
allows for the expression of
more complex match conditions.
fir.select_case %arg : i32 [
#fir.point, %0, ^bb1(%0 : i32),
#fir.lower, %1, ^bb2(%2,%arg,%arg2,%1 : i32,i32,i32,i32),
#fir.interval, %2, %3, ^bb3(%2,%arg2 : i32,i32),
#fir.upper, %arg, ^bb4(%1 : i32),
unit, ^bb5]
Traits: AttrSizedOperandSegments
, Terminator
Interfaces: BranchOpInterface
Operands:¶
Operand |
Description |
---|---|
|
any type |
|
variadic of any type |
|
variadic of any type |
Successors:¶
Successor |
Description |
---|---|
|
any successor |
fir.select
(::fir::SelectOp)¶
A multiway branch
A multiway branch terminator with similar semantics to C’s switch
statement. A selector value is matched against a list of constants
of the same type for a match. When a match is found, control is
transferred to the corresponding basic block. A select
must have
at least one basic block with a corresponding unit
match, and
that block will be selected when all other conditions fail to match.
fir.select %arg:i32 [1, ^bb1(%0 : i32),
2, ^bb2(%2,%arg,%arg2 : i32,i32,i32),
-3, ^bb3(%arg2,%2 : i32,i32),
4, ^bb4(%1 : i32),
unit, ^bb5]
Traits: AttrSizedOperandSegments
, Terminator
Interfaces: BranchOpInterface
Operands:¶
Operand |
Description |
---|---|
|
any type |
|
variadic of any type |
|
variadic of any type |
Successors:¶
Successor |
Description |
---|---|
|
any successor |
fir.select_rank
(::fir::SelectRankOp)¶
Fortran’s SELECT RANK statement
Similar to select
, select_rank
provides a way to express Fortran’s
SELECT RANK construct. In this case, the rank of the selector value
is matched against constants of integer type. The structure is the
same as select
, but select_rank
determines the rank of the selector
variable at runtime to determine the best match.
fir.select_rank %arg:i32 [1, ^bb1(%0 : i32),
2, ^bb2(%2,%arg,%arg2 : i32,i32,i32),
3, ^bb3(%arg2,%2 : i32,i32),
-1, ^bb4(%1 : i32),
unit, ^bb5]
Traits: AttrSizedOperandSegments
, Terminator
Interfaces: BranchOpInterface
Operands:¶
Operand |
Description |
---|---|
|
any type |
|
variadic of any type |
|
variadic of any type |
Successors:¶
Successor |
Description |
---|---|
|
any successor |
fir.select_type
(::fir::SelectTypeOp)¶
Fortran’s SELECT TYPE statement
Similar to select
, select_type
provides a way to express Fortran’s
SELECT TYPE construct. In this case, the type of the selector value
is matched against a list of type descriptors. The structure is the
same as select
, but select_type
determines the type of the selector
variable at runtime to determine the best match.
fir.select_type %arg : !fir.box<()> [
#fir.type_is<!fir.type<type1>>, ^bb1(%0 : i32),
#fir.type_is<!fir.type<type2>>, ^bb2(%2 : i32),
#fir.class_is<!fir.type<type3>>, ^bb3(%2 : i32),
#fir.type_is<!fir.type<type4>>, ^bb4(%1,%3 : i32,f32),
unit, ^bb5]
Traits: AttrSizedOperandSegments
, Terminator
Interfaces: BranchOpInterface
Operands:¶
Operand |
Description |
---|---|
|
any type |
|
variadic of any type |
|
variadic of any type |
Successors:¶
Successor |
Description |
---|---|
|
any successor |
fir.shape
(::fir::ShapeOp)¶
Generate an abstract shape vector of type !fir.shape
Syntax:
operation ::= `fir.shape` operands attr-dict `:` functional-type(operands, results)
The arguments are an ordered list of integral type values that define the runtime extent of each dimension of an array. The shape information is given in the same row-to-column order as Fortran. This abstract shape value must be applied to a reified object, so all shape information must be specified. The extent must be nonnegative.
%d = fir.shape %row_sz, %col_sz : (index, index) -> !fir.shape<2>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
shape of a multidimensional array object |
fir.shape_shift
(::fir::ShapeShiftOp)¶
Generate an abstract shape and shift vector of type !fir.shapeshift
Syntax:
operation ::= `fir.shape_shift` operands attr-dict `:` functional-type(operands, results)
The arguments are an ordered list of integral type values that is a multiple of 2 in length. Each such pair is defined as: the lower bound and the extent for that dimension. The shifted shape information is given in the same row-to-column order as Fortran. This abstract shifted shape value must be applied to a reified object, so all shifted shape information must be specified. The extent must be nonnegative.
%d = fir.shape_shift %lo, %extent : (index, index) -> !fir.shapeshift<1>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
shape and origin of a multidimensional array object |
fir.shift
(::fir::ShiftOp)¶
Generate an abstract shift vector of type !fir.shift
Syntax:
operation ::= `fir.shift` operands attr-dict `:` functional-type(operands, results)
The arguments are an ordered list of integral type values that define the runtime lower bound of each dimension of an array. The shape information is given in the same row-to-column order as Fortran. This abstract shift value must be applied to a reified object, so all shift information must be specified.
%d = fir.shift %row_lb, %col_lb : (index, index) -> !fir.shift<2>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
lower bounds of a multidimensional array object |
fir.slice
(::fir::SliceOp)¶
Generate an abstract slice vector of type !fir.slice
Syntax:
operation ::= `fir.slice` $triples (`path` $fields^)? (`substr` $substr^)? attr-dict `:`
functional-type(operands, results)
The array slicing arguments are an ordered list of integral type values that must be a multiple of 3 in length. Each such triple is defined as: the lower bound, the upper bound, and the stride for that dimension, as in Fortran syntax. Both bounds are inclusive. The array slice information is given in the same row-to-column order as Fortran. This abstract slice value must be applied to a reified object, so all slice information must be specified. The extent must be nonnegative and the stride must not be zero.
%d = fir.slice %lo, %hi, %step : (index, index, index) -> !fir.slice<1>
To support generalized slicing of Fortran’s dynamic derived types, a slice op can be given a component path (narrowing from the product type of the original array to the specific elemental type of the sliced projection).
%fld = fir.field_index component, !fir.type<t{...component:ct...}>
%d = fir.slice %lo, %hi, %step path %fld :
(index, index, index, !fir.field) -> !fir.slice<1>
Projections of !fir.char
type can be further narrowed to invariant
substrings.
%d = fir.slice %lo, %hi, %step substr %offset, %width :
(index, index, index, index, index) -> !fir.slice<1>
Traits: AttrSizedOperandSegments
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
variadic of any integer |
|
variadic of coordinate type |
|
variadic of any integer |
Results:¶
Result |
Description |
---|---|
«unnamed» |
FIR slice |
fir.store
(::fir::StoreOp)¶
Store an SSA-value to a memory location
Store an ssa-value (virtual register) to a memory reference. The stored value must be of the same type as the referent type of the memory reference.
%v = ... : f64
%p = ... : !fir.ptr<f64>
fir.store %v to %p : !fir.ptr<f64>
The above store changes the value to which the pointer is pointing and not
the pointer itself. The operation is undefined if the memory reference,
%p
, is undefined or null.
Interfaces: FirAliasTagOpInterface
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
tbaa | ::mlir::ArrayAttr | LLVM dialect TBAA tag metadata array |
Operands:¶
Operand |
Description |
---|---|
|
any type |
|
any reference |
fir.string_lit
(::fir::StringLitOp)¶
Create a string literal constant
An FIR constant that represents a sequence of characters that correspond to Fortran’s CHARACTER type, including a LEN. We support CHARACTER values of different KINDs (different constant sizes).
%1 = fir.string_lit "Hello, World!"(13) : !fir.char<1> // ASCII
%2 = fir.string_lit [158, 2345](2) : !fir.char<2> // Wide chars
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Results:¶
Result |
Description |
---|---|
«unnamed» |
FIR character type |
fir.subc
(::fir::SubcOp)¶
Syntax:
operation ::= `fir.subc` operands attr-dict `:` type($result)
Traits: SameOperandsAndResultType
Interfaces: ArithFastMathInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
fastmath | ::mlir::arith::FastMathFlagsAttr | Floating point fast math flags |
Operands:¶
Operand |
Description |
---|---|
|
any floating point complex type |
|
any floating point complex type |
Results:¶
Result |
Description |
---|---|
|
any type |
fir.type_desc
(::fir::TypeDescOp)¶
Get type descriptor for a given type
Generates a constant object that is an abstract type descriptor of the
specified type. The meta-type of a type descriptor for the type T
is !fir.tdesc<T>
.
%t = fir.type_desc !fir.type<> // returns value of !fir.tdesc<!T>
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
in_type | ::mlir::TypeAttr | Fortran surface type |
Results:¶
Result |
Description |
---|---|
|
FIR dialect type |
fir.type_info
(::fir::TypeInfoOp)¶
Derived type information
Syntax:
operation ::= `fir.type_info` $sym_name (`noinit` $no_init^)? (`nodestroy` $no_destroy^)?
(`nofinal` $no_final^)? (`extends` $parent_type^)? attr-dict `:` $type
(`dispatch_table` $dispatch_table^)?
(`component_info` $component_info^)?
Define extra information about a !fir.type<> that represents a Fortran derived type.
The optional dispatch table region defines a dispatch table with the derived
type type-bound procedures. It contains a list of associations
between method identifiers and corresponding FuncOp
symbols.
The ordering of associations in the map is determined by the front end.
The “no_init” flag indicates that this type has no components requiring default initialization (including setting allocatable component to a clean deallocated state).
The “no_destroy” flag indicates that there are no allocatable components that require deallocation.
The “no_final” flag indicates that there are no final methods for this type, for its parents ,or for components.
fir.type_info @_QMquuzTfoo noinit nofinal : !fir.type<_QMquuzTfoo{i:i32}> dispatch_table {
fir.dt_entry method1, @_QFNMquuzTfooPmethod1AfooR
fir.dt_entry method2, @_QFNMquuzTfooPmethod2AfooII
}
Traits: IsolatedFromAbove
, SingleBlockImplicitTerminator<FirEndOp>
, SingleBlock
Interfaces: Symbol
Attributes:¶
Attribute | MLIR Type | Description |
---|---|---|
sym_name | ::mlir::StringAttr | string attribute |
type | ::mlir::TypeAttr | any type attribute |
parent_type | ::mlir::TypeAttr | any type attribute |
no_init | ::mlir::UnitAttr | unit attribute |
no_destroy | ::mlir::UnitAttr | unit attribute |
no_final | ::mlir::UnitAttr | unit attribute |
fir.unboxchar
(::fir::UnboxCharOp)¶
Unbox a boxchar value into a pair value
Syntax:
operation ::= `fir.unboxchar` operands attr-dict `:` functional-type(operands, results)
Unboxes a value of boxchar
type into a pair consisting of a memory
reference to the CHARACTER data and the LEN type parameter.
%45 = ... : !fir.boxchar<1>
%46:2 = fir.unboxchar %45 : (!fir.boxchar<1>) -> (!fir.ref<!fir.char<1>>, i32)
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
CHARACTER type descriptor. |
Results:¶
Result |
Description |
---|---|
«unnamed» |
Reference to an entity type |
«unnamed» |
any integer |
fir.unboxproc
(::fir::UnboxProcOp)¶
Unbox a boxproc value into a pair value
Syntax:
operation ::= `fir.unboxproc` operands attr-dict `:` functional-type(operands, results)
Unboxes a value of boxproc
type into a pair consisting of a procedure
pointer and a pointer to a host context.
%47 = ... : !fir.boxproc<() -> i32>
%48:2 = fir.unboxproc %47 : (!fir.ref<() -> i32>, !fir.ref<tuple<f32, i32>>)
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:¶
Operand |
Description |
---|---|
|
Results:¶
Result |
Description |
---|---|
«unnamed» |
function type |
|
Reference to an entity type |
fir.undefined
(::fir::UndefOp)¶
Explicit undefined value of some type
Syntax:
operation ::= `fir.undefined` type($intype) attr-dict
Constructs an ssa-value of the specified type with an undefined value.
This operation is typically created internally by the mem2reg conversion
pass. An undefined value can be of any type except !fir.ref<T>
.
%a = fir.undefined !fir.array<10 x !fir.type<T>>
The example creates an array shaped ssa-value. The array is rank 1, extent
10, and each element has type !fir.type<T>
.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Results:¶
Result |
Description |
---|---|
|
any type |
fir.unreachable
(::fir::UnreachableOp)¶
The unreachable instruction
Syntax:
operation ::= `fir.unreachable` attr-dict
Terminates a basic block with the assertion that the end of the block
will never be reached at runtime. This instruction can be used
immediately after a call to the Fortran runtime to terminate the
program, for example. This instruction corresponds to the LLVM IR
instruction unreachable
.
fir.unreachable
Traits: Terminator
fir.zero_bits
(::fir::ZeroOp)¶
Explicit polymorphic zero value of some type
Syntax:
operation ::= `fir.zero_bits` type($intype) attr-dict
Constructs an ssa-value of the specified type with a value of zero for all bits.
%a = fir.zero_bits !fir.box<!fir.array<10 x !fir.type<T>>>
The example creates a value of type box where all bits are zero.
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Results:¶
Result |
Description |
---|---|
|
any type |