FLANG
fold-reduction.h
1//===-- lib/Evaluate/fold-reduction.h -------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef FORTRAN_EVALUATE_FOLD_REDUCTION_H_
10#define FORTRAN_EVALUATE_FOLD_REDUCTION_H_
11
12#include "fold-implementation.h"
13
14namespace Fortran::evaluate {
15
16// DOT_PRODUCT
17template <typename T>
18static Expr<T> FoldDotProduct(
19 FoldingContext &context, FunctionRef<T> &&funcRef) {
20 using Element = typename Constant<T>::Element;
21 auto args{funcRef.arguments()};
22 CHECK(args.size() == 2);
23 Folder<T> folder{context};
24 Constant<T> *va{folder.Folding(args[0])};
25 Constant<T> *vb{folder.Folding(args[1])};
26 if (va && vb) {
27 CHECK(va->Rank() == 1 && vb->Rank() == 1);
28 if (va->size() != vb->size()) {
29 context.messages().Say(
30 "Vector arguments to DOT_PRODUCT have distinct extents %zd and %zd"_err_en_US,
31 va->size(), vb->size());
32 return MakeInvalidIntrinsic(std::move(funcRef));
33 }
34 Element sum{};
35 bool overflow{false};
36 if constexpr (T::category == TypeCategory::Complex) {
37 std::vector<Element> conjugates;
38 for (const Element &x : va->values()) {
39 conjugates.emplace_back(x.CONJG());
40 }
41 Constant<T> conjgA{
42 std::move(conjugates), ConstantSubscripts{va->shape()}};
43 Expr<T> products{Fold(
44 context, Expr<T>{std::move(conjgA)} * Expr<T>{Constant<T>{*vb}})};
45 Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
46 [[maybe_unused]] Element correction{};
47 const auto &rounding{context.targetCharacteristics().roundingMode()};
48 for (const Element &x : cProducts.values()) {
49 if constexpr (useKahanSummation) {
50 auto next{x.Subtract(correction, rounding)};
51 overflow |= next.flags.test(RealFlag::Overflow);
52 auto added{sum.Add(next.value, rounding)};
53 overflow |= added.flags.test(RealFlag::Overflow);
54 correction = added.value.Subtract(sum, rounding)
55 .value.Subtract(next.value, rounding)
56 .value;
57 sum = std::move(added.value);
58 } else {
59 auto added{sum.Add(x, rounding)};
60 overflow |= added.flags.test(RealFlag::Overflow);
61 sum = std::move(added.value);
62 }
63 }
64 } else if constexpr (T::category == TypeCategory::Logical) {
65 Expr<T> conjunctions{Fold(context,
66 Expr<T>{LogicalOperation<T::kind>{LogicalOperator::And,
67 Expr<T>{Constant<T>{*va}}, Expr<T>{Constant<T>{*vb}}}})};
68 Constant<T> &cConjunctions{DEREF(UnwrapConstantValue<T>(conjunctions))};
69 for (const Element &x : cConjunctions.values()) {
70 if (x.IsTrue()) {
71 sum = Element{true};
72 break;
73 }
74 }
75 } else if constexpr (T::category == TypeCategory::Integer) {
76 Expr<T> products{
77 Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
78 Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
79 for (const Element &x : cProducts.values()) {
80 auto next{sum.AddSigned(x)};
81 overflow |= next.overflow;
82 sum = std::move(next.value);
83 }
84 } else if constexpr (T::category == TypeCategory::Unsigned) {
85 Expr<T> products{
86 Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
87 Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
88 for (const Element &x : cProducts.values()) {
89 sum = sum.AddUnsigned(x).value;
90 }
91 } else {
92 static_assert(T::category == TypeCategory::Real);
93 Expr<T> products{
94 Fold(context, Expr<T>{Constant<T>{*va}} * Expr<T>{Constant<T>{*vb}})};
95 Constant<T> &cProducts{DEREF(UnwrapConstantValue<T>(products))};
96 [[maybe_unused]] Element correction{};
97 const auto &rounding{context.targetCharacteristics().roundingMode()};
98 for (const Element &x : cProducts.values()) {
99 if constexpr (useKahanSummation) {
100 auto next{x.Subtract(correction, rounding)};
101 overflow |= next.flags.test(RealFlag::Overflow);
102 auto added{sum.Add(next.value, rounding)};
103 overflow |= added.flags.test(RealFlag::Overflow);
104 correction = added.value.Subtract(sum, rounding)
105 .value.Subtract(next.value, rounding)
106 .value;
107 sum = std::move(added.value);
108 } else {
109 auto added{sum.Add(x, rounding)};
110 overflow |= added.flags.test(RealFlag::Overflow);
111 sum = std::move(added.value);
112 }
113 }
114 }
115 if (overflow) {
116 context.Warn(common::UsageWarning::FoldingException,
117 "DOT_PRODUCT of %s data overflowed during computation"_warn_en_US,
118 T::AsFortran());
119 }
120 return Expr<T>{Constant<T>{std::move(sum)}};
121 }
122 return Expr<T>{std::move(funcRef)};
123}
124
125// Fold and validate a DIM= argument. Returns false on error.
126bool CheckReductionDIM(std::optional<int> &dim, FoldingContext &,
127 ActualArguments &, std::optional<int> dimIndex, int rank);
128
129// Fold and validate a MASK= argument. Return null on error, absent MASK=, or
130// non-constant MASK=.
131Constant<LogicalResult> *GetReductionMASK(
132 std::optional<ActualArgument> &maskArg, const ConstantSubscripts &shape,
134
135// Common preprocessing for reduction transformational intrinsic function
136// folding. If the intrinsic can have DIM= &/or MASK= arguments, extract
137// and check them. If a MASK= is present, apply it to the array data and
138// substitute replacement values for elements corresponding to .FALSE. in
139// the mask. If the result is present, the intrinsic call can be folded.
140template <typename T> struct ArrayAndMask {
141 Constant<T> array;
143};
144template <typename T>
145static std::optional<ArrayAndMask<T>> ProcessReductionArgs(
146 FoldingContext &context, ActualArguments &arg, std::optional<int> &dim,
147 int arrayIndex, std::optional<int> dimIndex = std::nullopt,
148 std::optional<int> maskIndex = std::nullopt) {
149 if (arg.empty()) {
150 return std::nullopt;
151 }
152 Constant<T> *folded{Folder<T>{context}.Folding(arg[arrayIndex])};
153 if (!folded || folded->Rank() < 1) {
154 return std::nullopt;
155 }
156 if (!CheckReductionDIM(dim, context, arg, dimIndex, folded->Rank())) {
157 return std::nullopt;
158 }
159 std::size_t n{folded->size()};
160 std::vector<Scalar<LogicalResult>> maskElement;
161 if (maskIndex && static_cast<std::size_t>(*maskIndex) < arg.size() &&
162 arg[*maskIndex]) {
163 if (const Constant<LogicalResult> *origMask{
164 GetReductionMASK(arg[*maskIndex], folded->shape(), context)}) {
165 if (auto scalarMask{origMask->GetScalarValue()}) {
166 maskElement =
167 std::vector<Scalar<LogicalResult>>(n, scalarMask->IsTrue());
168 } else {
169 maskElement = origMask->values();
170 }
171 } else {
172 return std::nullopt;
173 }
174 } else {
175 maskElement = std::vector<Scalar<LogicalResult>>(n, true);
176 }
177 return ArrayAndMask<T>{Constant<T>(*folded),
179 std::move(maskElement), ConstantSubscripts{folded->shape()}}};
180}
181
182// Generalized reduction to an array of one dimension fewer (w/ DIM=)
183// or to a scalar (w/o DIM=). The ACCUMULATOR type must define
184// operator()(Scalar<T> &, const ConstantSubscripts &, bool first)
185// and Done(Scalar<T> &).
186template <typename T, typename ACCUMULATOR, typename ARRAY>
187static Constant<T> DoReduction(const Constant<ARRAY> &array,
188 const Constant<LogicalResult> &mask, std::optional<int> &dim,
189 const Scalar<T> &identity, ACCUMULATOR &accumulator) {
190 ConstantSubscripts at{array.lbounds()};
191 ConstantSubscripts maskAt{mask.lbounds()};
192 std::vector<typename Constant<T>::Element> elements;
193 ConstantSubscripts resultShape; // empty -> scalar
194 if (dim) { // DIM= is present, so result is an array
195 resultShape = array.shape();
196 resultShape.erase(resultShape.begin() + (*dim - 1));
197 ConstantSubscript dimExtent{array.shape().at(*dim - 1)};
198 CHECK(dimExtent == mask.shape().at(*dim - 1));
199 ConstantSubscript &dimAt{at[*dim - 1]};
200 ConstantSubscript dimLbound{dimAt};
201 ConstantSubscript &maskDimAt{maskAt[*dim - 1]};
202 ConstantSubscript maskDimLbound{maskDimAt};
203 for (auto n{GetSize(resultShape)}; n-- > 0;
204 array.IncrementSubscripts(at), mask.IncrementSubscripts(maskAt)) {
205 elements.push_back(identity);
206 if (dimExtent > 0) {
207 dimAt = dimLbound;
208 maskDimAt = maskDimLbound;
209 bool firstUnmasked{true};
210 for (ConstantSubscript j{0}; j < dimExtent; ++j, ++dimAt, ++maskDimAt) {
211 if (mask.At(maskAt).IsTrue()) {
212 accumulator(elements.back(), at, firstUnmasked);
213 firstUnmasked = false;
214 }
215 }
216 --dimAt, --maskDimAt;
217 }
218 accumulator.Done(elements.back());
219 }
220 } else { // no DIM=, result is scalar
221 elements.push_back(identity);
222 bool firstUnmasked{true};
223 for (auto n{array.size()}; n-- > 0;
224 array.IncrementSubscripts(at), mask.IncrementSubscripts(maskAt)) {
225 if (mask.At(maskAt).IsTrue()) {
226 accumulator(elements.back(), at, firstUnmasked);
227 firstUnmasked = false;
228 }
229 }
230 accumulator.Done(elements.back());
231 }
232 if constexpr (T::category == TypeCategory::Character) {
233 return {static_cast<ConstantSubscript>(identity.size()),
234 std::move(elements), std::move(resultShape)};
235 } else {
236 return {std::move(elements), std::move(resultShape)};
237 }
238}
239
240// MAXVAL & MINVAL
241template <typename T, bool ABS = false> class MaxvalMinvalAccumulator {
242public:
243 MaxvalMinvalAccumulator(
244 RelationalOperator opr, FoldingContext &context, const Constant<T> &array)
245 : opr_{opr}, context_{context}, array_{array} {};
246 void operator()(Scalar<T> &element, const ConstantSubscripts &at,
247 [[maybe_unused]] bool firstUnmasked) const {
248 auto aAt{array_.At(at)};
249 if constexpr (ABS) {
250 aAt = aAt.ABS();
251 }
252 if constexpr (T::category == TypeCategory::Real) {
253 if (firstUnmasked || element.IsNotANumber()) {
254 // Return NaN if and only if all unmasked elements are NaNs and
255 // at least one unmasked element is visible.
256 element = aAt;
257 return;
258 }
259 }
260 Expr<LogicalResult> test{PackageRelation(
261 opr_, Expr<T>{Constant<T>{aAt}}, Expr<T>{Constant<T>{element}})};
262 auto folded{GetScalarConstantValue<LogicalResult>(
263 test.Rewrite(context_, std::move(test)))};
264 CHECK(folded.has_value());
265 if (folded->IsTrue()) {
266 element = aAt;
267 }
268 }
269 void Done(Scalar<T> &) const {}
270
271private:
272 RelationalOperator opr_;
273 FoldingContext &context_;
274 const Constant<T> &array_;
275};
276
277template <typename T>
278static Expr<T> FoldMaxvalMinval(FoldingContext &context, FunctionRef<T> &&ref,
279 RelationalOperator opr, const Scalar<T> &identity) {
280 static_assert(T::category == TypeCategory::Integer ||
281 T::category == TypeCategory::Unsigned ||
282 T::category == TypeCategory::Real ||
283 T::category == TypeCategory::Character);
284 std::optional<int> dim;
285 if (std::optional<ArrayAndMask<T>> arrayAndMask{
286 ProcessReductionArgs<T>(context, ref.arguments(), dim,
287 /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
288 MaxvalMinvalAccumulator<T> accumulator{opr, context, arrayAndMask->array};
289 return Expr<T>{DoReduction<T>(
290 arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)};
291 }
292 return Expr<T>{std::move(ref)};
293}
294
295// PRODUCT
296template <typename T> class ProductAccumulator {
297public:
298 ProductAccumulator(const Constant<T> &array) : array_{array} {}
299 void operator()(
300 Scalar<T> &element, const ConstantSubscripts &at, bool /*first*/) {
301 if constexpr (T::category == TypeCategory::Integer) {
302 auto prod{element.MultiplySigned(array_.At(at))};
303 overflow_ |= prod.SignedMultiplicationOverflowed();
304 element = prod.lower;
305 } else if constexpr (T::category == TypeCategory::Unsigned) {
306 element = element.MultiplyUnsigned(array_.At(at)).lower;
307 } else { // Real & Complex
308 auto prod{element.Multiply(array_.At(at))};
309 overflow_ |= prod.flags.test(RealFlag::Overflow);
310 element = prod.value;
311 }
312 }
313 bool overflow() const { return overflow_; }
314 void Done(Scalar<T> &) const {}
315
316private:
317 const Constant<T> &array_;
318 bool overflow_{false};
319};
320
321template <typename T>
322static Expr<T> FoldProduct(
323 FoldingContext &context, FunctionRef<T> &&ref, Scalar<T> identity) {
324 static_assert(T::category == TypeCategory::Integer ||
325 T::category == TypeCategory::Unsigned ||
326 T::category == TypeCategory::Real ||
327 T::category == TypeCategory::Complex);
328 std::optional<int> dim;
329 if (std::optional<ArrayAndMask<T>> arrayAndMask{
330 ProcessReductionArgs<T>(context, ref.arguments(), dim,
331 /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
332 ProductAccumulator accumulator{arrayAndMask->array};
333 auto result{Expr<T>{DoReduction<T>(
334 arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)}};
335 if (accumulator.overflow()) {
336 context.Warn(common::UsageWarning::FoldingException,
337 "PRODUCT() of %s data overflowed"_warn_en_US, T::AsFortran());
338 }
339 return result;
340 }
341 return Expr<T>{std::move(ref)};
342}
343
344// SUM
345template <typename T> class SumAccumulator {
346 using Element = typename Constant<T>::Element;
347
348public:
349 SumAccumulator(const Constant<T> &array, Rounding rounding)
350 : array_{array}, rounding_{rounding} {}
351 void operator()(
352 Element &element, const ConstantSubscripts &at, bool /*first*/) {
353 if constexpr (T::category == TypeCategory::Integer) {
354 auto sum{element.AddSigned(array_.At(at))};
355 overflow_ |= sum.overflow;
356 element = sum.value;
357 } else if constexpr (T::category == TypeCategory::Unsigned) {
358 element = element.AddUnsigned(array_.At(at)).value;
359 } else { // Real & Complex: use Kahan summation
360 auto next{array_.At(at).Subtract(correction_, rounding_)};
361 overflow_ |= next.flags.test(RealFlag::Overflow);
362 auto sum{element.Add(next.value, rounding_)};
363 overflow_ |= sum.flags.test(RealFlag::Overflow);
364 // correction = (sum - element) - next; algebraically zero
365 correction_ = sum.value.Subtract(element, rounding_)
366 .value.Subtract(next.value, rounding_)
367 .value;
368 element = sum.value;
369 }
370 }
371 bool overflow() const { return overflow_; }
372 void Done([[maybe_unused]] Element &element) {
373 if constexpr (T::category != TypeCategory::Integer &&
374 T::category != TypeCategory::Unsigned) {
375 auto corrected{element.Add(correction_, rounding_)};
376 overflow_ |= corrected.flags.test(RealFlag::Overflow);
377 correction_ = Scalar<T>{};
378 element = corrected.value;
379 }
380 }
381
382private:
383 const Constant<T> &array_;
384 Rounding rounding_;
385 bool overflow_{false};
386 Element correction_{};
387};
388
389template <typename T>
390static Expr<T> FoldSum(FoldingContext &context, FunctionRef<T> &&ref) {
391 static_assert(T::category == TypeCategory::Integer ||
392 T::category == TypeCategory::Unsigned ||
393 T::category == TypeCategory::Real ||
394 T::category == TypeCategory::Complex);
395 using Element = typename Constant<T>::Element;
396 std::optional<int> dim;
397 Element identity{};
398 if (std::optional<ArrayAndMask<T>> arrayAndMask{
399 ProcessReductionArgs<T>(context, ref.arguments(), dim,
400 /*ARRAY=*/0, /*DIM=*/1, /*MASK=*/2)}) {
401 SumAccumulator accumulator{
402 arrayAndMask->array, context.targetCharacteristics().roundingMode()};
403 auto result{Expr<T>{DoReduction<T>(
404 arrayAndMask->array, arrayAndMask->mask, dim, identity, accumulator)}};
405 if (accumulator.overflow()) {
406 context.Warn(common::UsageWarning::FoldingException,
407 "SUM() of %s data overflowed"_warn_en_US, T::AsFortran());
408 }
409 return result;
410 }
411 return Expr<T>{std::move(ref)};
412}
413
414// Utility for IALL, IANY, IPARITY, ALL, ANY, & PARITY
415template <typename T> class OperationAccumulator {
416public:
417 OperationAccumulator(const Constant<T> &array,
418 Scalar<T> (Scalar<T>::*operation)(const Scalar<T> &) const)
419 : array_{array}, operation_{operation} {}
420 void operator()(
421 Scalar<T> &element, const ConstantSubscripts &at, bool /*first*/) {
422 element = (element.*operation_)(array_.At(at));
423 }
424 void Done(Scalar<T> &) const {}
425
426private:
427 const Constant<T> &array_;
428 Scalar<T> (Scalar<T>::*operation_)(const Scalar<T> &) const;
429};
430
431} // namespace Fortran::evaluate
432#endif // FORTRAN_EVALUATE_FOLD_REDUCTION_H_
Definition constant.h:147
Definition common.h:214
Definition fold-implementation.h:55
Definition common.h:216
Definition call.h:282
Definition call.h:34
Definition target-rounding.h:18
Definition fold-reduction.h:140
Definition expression.h:379